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Motivations

« Standard eddy diffusivity model and Boussinesq approximation in RANS
equation

« Researchers often ask: “how to tune vr(z,y, 2)?”
* We study: “what should the entire operator look like?”

* Motivations: the standard model is not truly predictive for many practical
flows
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Simpler Question: Scalar Transport

Instantaneous equation of passive scalar transport (Microscopic)
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Macroscopic Forcing Method (MFM)
Investigate response to forcing
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S survives in averaging the equation
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Condition: S = S

Perform many DNSs to compute ¢ in response to different s
Obtain a linear system L¢ = s and rearrange to obtain L

Expensive!
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Example: A 2D Parallel Flow (1/6)
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« Steady, parallel, velocity field ?7 A
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« Example of 2D solution for ¢ (“expensive DNS”)
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« What 1D equation (“RANS”) can directly predict C?



Example: A 2D Parallel Flow (2/6)

* Dimensionless Microscopic Equation

Oc Oc 0%c 9 /de
— = — — 21D LoU
ot Foos(w2) 5 Or, 03 i G/Hé ‘ D/ (L2U)

* Approximate model using method of G. |. Taylor (1953)

gc _10% macroscopic diffusivity = D=1/2
ot  20x] valid for large-scale

Leading-order Taylor

* Stanford University




Example: A 2D Parallel Flow (3/6)

* MFM analysis:
« Add forcing to the governing equation
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* For different s find the linear response ¢

 Homogeneity allows analysis in Fourier space

s(xy,t) = exp (1wt + tkxy)
—> ¢ (x1,t) = cexp (iwt + ikx;)

— L =1/2(w, k)
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Example: A 2D Parallel Flow (4/6)

* MFM result (steady limit, w=0)
« Remember Taylor/Boussinesq prediction
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Example: A 2D Parallel Flow (5/6)

* Macroscopic operator (steady limit, w=0)

103_

107 Fitted expression
3 101 4 ._/Q*".M i, AkQ
~— F S
<|\\1 10° 4 /’// E (k) - 2

,0”/ \/1 _|_ (Bk)
1071 5 /”'
/"/‘
¥
10724~
0w o
k  Not a number but an operator

Suppressed in small-scale limits
Non-local operator

a0 / pr \o

- (9513 2 02 aZIZ‘
_ 1 - gT ox i
< Stanford University

* Fitted operator:




Outline

* Go back and relax simplifications

Unsteady problems

Molecular diffusivity active in all directions

Unsteady 3D flows

Extension from scalar transport to Navier-Stokes

Extension to non-homogeneous flows

Computational cost

An example incorporating all of the above
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Example: A 2D Parallel Flow (6/6)

» Solution to the unsteady problem

IS

real part fitted operator
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» Evaluation of performance

MFM-based

Leading-order Taylor

L 4
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Extension to Turbulent Flows

«  What will happen if velocity is 3D, unsteady, and turbulent?
« Test case: Homogeneous Isotropic Turbulence (HIT) at Re,=40
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MFM for Navier-Stokes (1/2)

First obtain DNS (or measurement) of flow field
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Nonlinearity and interpretation of nonlinear term
Apply MFM to a generalized momentum transport equation (GMT)
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Linear system, (N.S. is its special case)
Operator dependent on flow Stanford University



MFM for Navier-Stokes (2/2)

 Example: MFM + GMT applied to HIT (Re,=40)
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Fitted operator:

L =-V.

DO
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e Turbulent Schmidt number Sc=D0,/D°.=0.5

° lC = 1.1leddy, l'U — O-GZeddy
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Impact on Prediction of Practical Flows

« Can the operator already obtained improve prediction of
mean velocity profile?

« Example: turbulent round jet - self-similar solution
» Use Prandtl Mixing Length Model to determine D and /
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Outline

* Go back and relax simplifications

Extension to non-homogeneous flows

Computational cost

An example incorporating all of the above
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Extension to Inhomogeneous Flows (1/2)

* Example: transport between two walls 6
- Left/right BC: Dirichlet condition |

« Top/bottom: periodic condition Nt

* Averaging defined in x,

« Steady limit

- Macroscopic model is 1D T X
* MFM Result:
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) D = Eddy ditfusivity operator

[, : discrete macroscopic operator , ,
Is a convolution kernel!



Most General Form of Eddy Diffusivity

e Scalar transport
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* Momentum transport
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« MFM allows precise measurement of D
* Expense?
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A fast method for computation of kernel

moments
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Inverse MFM (not presented)
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Can obtain moments of D at affordable cost =
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Boussinesq Approximation
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If kernel width ~ eddy size << macroscopic length
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= Provides a quantitative framework for assessment of the
Boussinesqg approximation
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Example Application

flow field DNS solution (s=1)
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Can construct approximate kernels
by matching higher moments of D(x4,y4)
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Outline

* Go back and relax simplifications

An example incorporating all of the above
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IMFM Applied to Turbulent Channel Flow
at Re.=180 (1/3)

Only 9 DNSs required to compute D%,
All 81 coefficients computed versus distance from wall
* This is the eddy-diffusivity tensor !
- Represents truncated operator up to the leading (local) term

vy,
dx
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- Analysis of non-local terms in progress

Distribution of D%,
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« Example profile
(one out of 81 profiles)
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« MFM can measure eddy diffusivity
on the centerline ! 000
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IMFM Applied to Turbulent Channel Flow
at Re.=180 (2/3)

 Leading order model (DY) is sufficient for RANS prediction of
channel flow (nonlocal effects not dominant for this example)

Mean Velocity Profile for Re=180
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* Error due to neglecting of non-local effects ~ 1.5% (converged)
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IMFM Applied to Turbulent Channel Flow
at Re,=180 (3/3)

Eddy diffusivity is highly anisotropic (non-Boussinesq)

» Let's examine streamwise momentum equation
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Boussinesq approx. prescribes D9;14=D%44
Our measurement shows D94, is ~16 times larger than D9%,!
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In parallel flows (e.g. channel) the difference does not matter
What about onset of separation?
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Final Words

 We developed a rheometer for turbulent flows

« Standard rheometer for laminar flow measures momentum
diffusivity
« Assumes the underlying Brownian motion (transporter of
momentum) remains unaffected by rheometry

« MFM honors this condition for turbulent flows

transporter of momentum momentum
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* MFM informs closure model forms:
-> anisotropy, non-locality

> Ref: Mani, A. and Park, D., "Macroscopic forcing method: a tool for turbulence
modeling and analysis of closures,” Physical Review Fluids Stanford University



Thank you
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